Photons on demand now possible on hair’s width optical chip.


By I fucking love science
By I fucking love science

A breakthrough in photonics that will help create extremely compact optical chips, a hair’s width in size and delivering a photon at a time, has been achieved by researchers from the University of Sydney.

“This result has applications in the development of complex quantum technologies, including completely secure communications, quantum measurement, the simulation of biological and chemical systems and of course quantum computing,” said Dr Alex Clark, leader of the research team from the Australian Research Council Centre of Excellence for Ultrahigh Bandwidth Devices for Optical Systems (CUDOS).

Carried out at the University of Sydney’s School of Physics, the research is published in Nature Communications today.

It is part of a wider collaboration involving Australian and international universities, including Macquarie University, the University of St Andrews and the University of York, as well as the Australian Defence Science and Technology Organisation (DSTO).

Photons are single particles of light that can readily carry quantum information. The importance of being able to develop a chip that can deliver one photon at a time at very high rates is to provide scalability for the extraordinary diversity of quantum technologies that could enhance computing and communication infrastructure.

Scalability refers to the ability to use many photon sources in parallel to carry out complicated tasks.

To read more click link up top!



Published by Revlang

I am a copywriter and I am committed to making our new technologies understandable to the not-so-very-young generations.

Leave a comment

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: